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Abstract—An analytical investigation is carried out on the effect on the rate of heat flow from a one-
dimensional straight (or cylindrical) fin with and without internal heat generation of the assumption tha*
no heat transfer takes place at the fin tip. This assumption yields trivial solutions for some values of the
parameters considered if internal heat sources exist in the fin. The error in the determination of the
foregoing rate of heat flow appears to be large for some conditions important for practical applications.
For the quantitative analysis of the fin, the following parameter ranges are used : Biot number, 0.1 —any
value lower than 0.1 ; generation number, 0-0.5; and the ratio of the length of the fin to its half-thickness
(or its half-radius), 1-100. The heat transfer coefficient is assumed to be a power function of the temperature
difference between the fin and its surroundings and that the power in this function is equal to —1, 0, 1 and 2.

INTRODUCTION

THE OBIECT of this study has been to analytically
investigate the effect on the performance of a straight
fin of rectangular profile (or a cylindrical fin) with
and without internal heat generation of the boundary
condition at the fin tip. To this end, a one-dimensional
analysis has been carried out. This is justified if the
Biot number 1s less than 0.1. In this case the error
made in the determination of the rate of heat transfer
from the fin to the fluid surrounding it is less than 1%
[1,2].

Since the one-dimensional differential equation of
the temperature distribution in the fin is of second
order, two boundary conditions are required to solve
this differential equation. The boundary condition at
the fin base is that the temperature there is constant.
For the fin tip, one of the two boundary conditions
can be selected, the condition that no heat transfer
takes placc at the fin tip or the condition that heat
transfer takes place at the fin tip. Herein, the first
mentioned boundary condition at the fin tip is referred
to as the hypothetical boundary condition and the
latter as the real boundary condition.

For the steady-state one-dimensional analytic
analysis of a straight (or a cylindrical) fin with no
internal heat sources, a uniform heat transfer
coefficient and the hypothetical boundary condition
at the fin tip were considered in practically all the
classical references [3-7] and in handbooks {8, 9]. In
a few studies, the heat transfer coefficient was assumed
to be dependent either on the space coordinate [10-
13] or the temperature of the fin itself [14-17]. In refs.
[18, 19], the real boundary condition at the fin tip was
used however and the heat transfer coefficient was

assumed to depend on the temperature of the fin itself.

A uniform heat transfer coefficient and the hypo-
thetical boundary condition at the fin tip were also
used in the analytic one-dimensional analysis of a
straight (or a cylindrical) fin with internal heat gen-
eration [20-23]. In refs. [24, 25], the heat transfer
coefficient was taken as a function of the temperature
of the fin.

For most industrial applications, the heat transfer
coefficient is given by

h = af" N

where @ and # are constants. The dimensionless con-
stant, n, in equation (1), may vary in general between
approximately — 6.6 and S and in most practical appli-
cations between approximately — 3 and 3. If the heat
transfer coefficient is given by equation (1) and the
hypothetical boundary condition at the fin tip is taken
into account, then the one-dimensional differential
equation of the temperature distribution in a straight
(or a cylindrical) fin with no internal heat sources can
be analytically solved only for a few values of » in
equation (1) using ordinary (i.e. algebraic, logarithmic
and circular) functions [14]. These values of n are
equal to 0, —1.0, —1.5, —1.6. —1.8, —1.9. —2.1,
—22, —2.4, =25, —3.0 and —4.0 if n is either an
integer or a one-digit number. For the remaining
values of n, the temperature distribution in the fin
is expressed in a transcendental function, i.e. in
Legendre’s normal elliptic integral of the first kind
for n=1 and 2 [14] and in the hypergeometric
function for —o0 < n < oo [26].

The contents of this paper are outlined below. Con-
sidering that the real boundary condition at the fin tip
and taking n = —1, 0, 1 and 2, respectively, then the
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NOMENCLATURE

A cross-sectional area of a fin [m?] T dimensionless temperature
a given constant [Wm™2K~¢+1] U half-fin thickness [m]
a,...,a, constants defined in the text w constant defined in the text [m]
Bi modified Biot number at the base of a X dimensionless space coordinate

fin X space coordinate [m]
b modified fin parameter Y,Z constants defined in the text.
e error
F(u/o) Legen.dre s normal elliptic integral of the Greek symbols

first kind

. % modular angle [rad]
f fin effectiveness . .
. B root of a polynomial equation
g>----g> constants defined in the text .
. ot Y constant defined in the text
h heat transfer coefficient [Wm ™K ™'] .
. . . 0 difference between the temperature of a
i imaginary number, ./ —1 ; .
. . fin and that of the fluid surrounding
Ji. ..., J¢ constants or functions defined in . .
. it at point x [K]

the Appendix amplitude [rad]
K thermal conductivity of the fin material H P ’

[Wm™'K™']
L fin length [m] Subscripts
M,m constants defined in the text l,...,4 order of a root of a polynomial
N generation number b fin base (i.e. x = 0)
n given constant e fin tip (1.e. x = L)
P circumference of a cylindrical fin [m] h hypothetical boundary condition at the
0] internal heat generation [W m~3} fin tip
q rate of heat transfer from a fin [W] m maximum value
S dimensionless rate of heat transfer from r reduced value

a fin real boundary condition at the fin tip.

analytic solutions of the one-dimensional differential
equation of the temperature distribution in a straight
(or a cylindrical) fin with uniform internal heat gen-
eration are presented. These solutions are in a general
form and apply also to the case where no internal heat
sources exist in the fin and also to the case where no
heat transfer takes place at the fin tip. The dimen-
sionless rate of heat transfer from the fin to the fluid
surrounding it is taken as a criterion for characterizing
the performance of the fin. This criterion can be deter-
mined if the temperature distribution in the fin is
known. For given values of n, the modified Biot num-
ber Bi, the generation number N and the ratio of the
length of the fin to its half-thickness (or half-radius)
L/W and using the real and hypothetical boundary
condition, respectively, the foregoing criterion can be
calculated and the values compared to one another.
The ranges of the dimensionless variables considered
are:n= —1,0, 1 and 2; Bi = 0.1 —any value lower
than0.1; N = 0-0.5and L/W = 1-100. For some con-
ditions important for practical applications however,
the error in the prediction of the rate of heat transfer
from the fin to its surroundings appears to be of a
significant magnitude if it is assumed that no heat
transfer takes place at the fin tip. Furthermore if
n=1,2and N > 0, then the solutions obtained with
this assumption are trivial beyond a certain value of
L/W for a given value of Bi.

To the author’s knowledge and in the cases where
n=1, 2 and N> 0, then the analytic solutions of
the foregoing non-linear differential equation are not
available in the literature if the real boundary con-
dition at the fin tip is being considered. These solutions
may also be of importance in nuclear and chemical
engineering since this differential equation applies to
diffusion and chemical reaction provided that the
appropriate changes in notation, the assumptions and
the remaining boundary condition are taken into
account.

Some of the solutions presented herein include
Legendre’s normal elliptic integral of the first kind.
Simple formulae are given to calculate this elliptic
integral in the Appendix.

DIFFERENTIAL EQUATION OF TEMPERATURE
DISTRIBUTION

A straight fin (of rectangular profile) or a cylindrical
(i.e. pin) fin is now considered. For the analysis of
such a fin, the following assumptions are made : one-
dimensional steady-state heat conduction through the
fin, a constant thermal conductivity of the fin material
and a constant cross-sectional area for the fin. Internal
heat generation in the fin is either uniform or zero.
The temperature of the fluid surrounding the fin is
constant. The origin of the space coordinate x is at
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the fin base and the positive value of x is toward
the fin tip. The straight fin is infinitely long in the
longitudinal direction. A unit length of this fin in this
direction is being considered here. The heat transfer
coefficient is given by equation (1).

For the assumptions being made, the non-dimen-
sional differential equation of the temperature dis-
tribution in the fin then becomes

d*T

o ng nT(n+I) —

e —bNT,. o))

The boundary conditions are expressed by

T=T,=0,/0, forX=0 3)
and
dTr Lo _
dX: _BZVVTb fOrX—l. (4)

The non-dimensional parameters used in equations
(2)—(4) are defined as follows:

T =0/0, &)
X =x/L (6)
1\2

b = Bi (W) N
Bie ﬁ%V _ aOI’g{W ®)

in which
W = U for the straight fin (10)

and

W = A/P for the cylindrical fin. (11)

In accordance with the first boundary condition
expressed in equation (3), the temperature difference
at the fin base is equal to 6,. The second boundary
condition in equation (4) implies that heat transfer
takes place at the fin tip, i.e. —K(df/dx) = A, for
x = L. For the hypothetical boundary condition at
the fin tip equation (4) reduces to

dT
— =0 forX =1.

ax (12)

Equation (12) expresses the fact that no heat trans-
fer takes place at the fin tip or that the fin tip is
perfectly insulated. Strictly speaking, this condition
can be only realized if the fin is infinitely long.

The definition of the Biot number given in the rela-
tive literature is identical to that of the modified Biot
number used herein (see equation (8)) for the straight
fin but is different for the cylindrical fin. For the latter,
the modified Biot number is half of the Biot number
defined in the literature.

In order to solve equation (2), @ and » in equation

1485

(1), the fin thickness 2U (or the fin diameter), the
amount of internal heat generation Q, the temperature
difference between the fin and its surroundings at the
fin base 8, and the thermal conductivity of the fin
material K should be known. These values have been
reduced to three dimensionless variables, i.e. the
modified Biot number Bi, the ratio of the length of
the fin to its half-thickness (or half-radius) L/W and
the generation number N, as can be deduced from
equations (7) to (11). In equation (2) 7 is not an
unknown since it is determined with the solution of
this equation considering that T, = 0,/0, and that 0,
is the temperature difference between the fin and its
surroundings at the fin tip.

The ratio of the interior to exterior resistances for
the fin is characterized by Bi and the fin shape by
L/W. The ratio of the total heat generated in the fin
to the heat that would be dissipated from the fin if all
of the fin was at the base temperature and that no
heat transfer took place at the fin tip is N [20]. If no
heat transfer takes place at the fin tip then the defi-
nition of N implies that the maximum value of N is
equal to 1 and that no heat is conducted into the fin
at its base for N = 1 since d7/dX = 0 along the fin. If
now the heat transfer takes place at the fin tip then N
has no physical meaning but it is still a convenient
dimensionless variable for the analysis of the fin since,
per definition, d7/d X cannot be zero along the fin (see
equation (4)). The maximum value of this generation
number, N, for the condition that heat transfer
takes place at the fin tip, can be determined with a
trial and error method, as will become clear to the
reader later.

SOLUTION OF DIFFERENTIAL EQUATION

In order to solve equation (2) using the real bound-
ary condition at the fin tip and the boundary condition
expressed in equation (3) forn = —1, 0, 1 and 2, the
procedures given in refs. [17, 25] have been used and
in which the solutions of this equation with the hypo-
thetical boundary condition at the fin tip were given.
Therefore, it seems sufficient to present only the solu-
tions of equation (2) but not the details in these solu-
tions.

In the cases where n = — 1 and 0

The dimensionless temperature in the fin, 7, and
the dimensionless temperature at the base of the fin,
T, forn = —1 are given by

S I PLA
DT T2\ L

and those for n = 0 by
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T = NT,~+/Bie V"'~ 4 (T, ~ NT,+./Bic™V")

N cosh {{/6(1—X)}
cosh /b

_ 1+./Bi{l1—(e¥* cosh /b)~ '}
® " N+(-N)cosh /b

1s)

(16)

If no internal heat sources exist in the fin, N is taken
as being equal to zero in equations (13)-(16) (i.e.
N=Q=0).

If the hypothetical boundary condition at the fin
tip is considered, then W/L equations (13) and (14)
and the terms including Bi in equations (15) and (16)
disappear since Ty, is a function of b and N, and T a
function of b, N and X, as equations (2), (3) and (12)
imply. The foregoing can also be explained as follows :
for a given value of b, numerous combinations of the
values of Bi and L/W are possible (see equation (7)),
but for given values of b and L/W, then the value of
Bi is unique. If L is increased (keeping W, N and b
constant) both W/L and Bi decrease. For sufficiently
large values of L, the rate of heat transfer from the
tip of the fin should be negligible when compared
with that from the fin, consequently the boundary
condition at the fin tip should not affect T and T,
and the values of Bi and W/L should be very small.
Accordingly, the terms including W/L in equations
(13) and (14) and those including Bi in equations (15)
and (16) become negligibly small if the fin is very long,
a condition which practically implies the hypothetical
boundary condition at the fin tip.

In the cases where n = 1 and 2
In order to calculate the dimensionless temperature
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if the amplitude u# and the modular angle « in it are
known. In ref. [27] F(u/x) is tabulated and it can be
also predicted with the simple formulae given in the
Appendix. For known values of T, Bi, L/W and N,
u is only a function of T and « is a constant. In
equation (19) m is also constant depending on the
foregoing four parameters. With equation (19) T, is
solved taking T= T. = 1 for X = 1. In this case this
equation reduces to

mE(u, o) —mF(u o) = 1. (20
The left-hand side of equation (20) includes only T,
Bi, L/W and N. From this equation Ty, is solved as
will be explained later. In equation (20) ys is the value
of ufor T =T, and p, the valueof pfor T=T7, = 1.
In order to calculate g, « and m in equation (19),
the roots of the polynomial equation in equation (17)
are required. Relevant to these roots and », only the
following conditions should be considered to deter-
mine the temperature distribution in the fin [25].

(1) For n = 1, the polynomial (i.e. cubic) equation
has three real roots f,, f, and f; and 1= f,
> B2 > B

(2) For n =1, the polynomial equation has one
real root §, and two complex roots 8, and §8,, and f,
is a positive real number equal to 1 or smaller than 1.

(3) For n = 2, the polynomial (i.e. fourth order)
equation has two real roots 8, and f8, and two complex
roots f;and f,and 1 = B, > .= — 1.

For n=1 and in the case where the polynomial
equation has three real roots; u, m, a, i, and p. are
given by

__T 0.5
u:arcsin{<ﬂl ) } for0 < pu<n/2

distribution in the fin for these cases, equation (2) B.,—T
should be integrated twice. The first integration of this (2la)
equation including the determination of the inte-
gration constant (using the real boundary condition m=2{y(f,—B:)} "’ (22a)
at the fin tip) is presented below for all values of #
excluding —2
dr
SpT =~ (17)
{Y l:T(n+ 2) (n+2)NT{,”+ I)T+ (n+2)NT{,"+ n_ 1 + (n ;—T’? l:l}
b
where _p\os
o = arcsin {(M) } (23a)
26T " 18) Bi—Bs
S on+2 ( B,—T,\"*
‘ ' ) H, = arcsin {( ' Tb> } (24a)
The integration of equation (17) including the cal- f>—T,
culation of the integration constant (using the bound- o5
ary condition expressed in equation (3)) yields e AP LY
q y U, = arcsin - . (25a)
,—

mF(pfa) = — X +mF(p, /o). (19)

In equation (19) F(u/e) is Legendre’s normal elliptic
integral of the first kind. Its value can be determined

For n = 1 and in the case where the polynomial equa-
tion has one real root f, and two complex roots f,
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and f3,; the latter are given by
Bra=rx M (26)

and u, m, o, i, and p. by

= arccos ir:McotZ for0< u<
H=ACCOS\ 1 Y Manz ) OTT SHEST
(21b)
4,yM3 —-0.5
= — anZ s 22
m M(tan Z+cot Z) {sin3 (22)} (22b)
o= (23b)
—r—McotZ
= 2
1, = arccos <Th~r+Mtan Z> (24b)
l—r—McotZ
. = arccos (1 o Mtan Z) (25b)
in which
=1Yi 27)
M
tan (2Z) = ;—— for0<2Z <m. (28)

Bi—r

For n = 2 and if the polynomial equation has two real
roots 8, and £, and two complex roots f; and f,;
these complex roots are given by

Bss=a tgi 29)

and p, m, 2, p, and g by

ag—agT
= — <pu< 21
L = arccos <a5T—a7> forO0<u<n (2lo)
2a.aq
m = 22¢)
{“27“204(ﬁ1”‘ﬁ2)}0'5 (
o = arcsina, (23c)
ag—agTy
— arccos [ 25 — 2
[, = arccos (aSTb—a7> (24¢)
as—a,
. = —— 25
U, = arccos <a5—a7> (25¢)
in which
ar =gl (30)
a§+(/3,~a,)(/32—a1)
ay = ——_— 3D
a(f,—h2)
a, = ay—(ai+ 1%’ (32)
as =f—a,—a/a, (33)
a, =B —a, +taa, (34)
a; = %(ﬁl+ﬁ’l)a§_£(ﬁl_—ﬁ2)a6 (35)
ag = é(ﬁl‘*‘/jl)aﬁ—%(ﬁl_ﬁz)aS (36)
a, = (1+ai) > (37
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If no heat sources exist in the fin (i.e. Q = N = 0)
then the roots of the foregoing polynomial equation
can be given in simple expressions, and equations
(21)—(25) can be significantly simplified. Since the
design engineer deals mostly with the applications in
which N =0, it is considered justifiable to present
these roots and simplified equations for N = 0.

In the case where n = | and N = 0, the polynomial
equation has one real root §, and two complex roots
B, and f; and these roots are given by

3 Bi\'’
_ﬂ‘ ; ¢
Bas —“2‘(_1i1\/3) (39)

and u, m, a, 4, and p. are given by

T+ ﬁlgl)
= arccos for0<u< 21b")
u= (T 8. g pusmn |
3 ENEE
m=—- Bi(tanZ+cotZ) Tsin 27
(22b%)
a=2L=m/12 (23b")
_ T+ B9 ,
[, = arccos <Tb 5. q. (24b")
1
lle = 4rccos <]I§:Z;> (25b")
in which
g =13(1-/3cot 2) (40)
g, =31+ /3tanZ). (41)

As noted earlier herein, f§, given by equation (38)
should always be a positive real number equal to 1 or
smaller than 1; accordingly 3Bi/(2T,) should always
be smaller than 1. This can be explained as follows:
if 3Bi/(2T,) is greater than 1, then the real root of the
polynomial equation is given by

3 Bi 13
bi=- (z“rj“)

and the complex roots can be given by equation (39)
if B, expressed in equation (42) is considered. It now
follows from equations (26) to (28) and equations
(39) and (42) that tan 2Z is always negative, contrary
to its definition. Therefore, if 3Bi/(2T,,) > |, the fin
fails to operate and accordingly the temperature dis-
tribution in it cannot be determined. The foregoing
also implies that the polynomial equation has always
one real and two complex roots if n = 1 and N = 0.

For n = 2 and N = 0, the polynomial equation has
two real roots f; and f, and two complex roots f,
and B, and these roots are expressed in

(42)



1488
2Bi\"*
BI,Z =x (1 - T‘g) (43)
53,4 = 1+ fii (44)
and g, m, o, u, and g, in
B, .
p = arccos | — = for0<u<sn (21c)
! (22¢")
m=—-——-
B/ (27)
o =n/4 (23¢")
uy = arccos (—§/Ty) (24¢")
1o = arccos (—f). (25¢")

The expression in parentheses in equation (43) can-
not be negative ; thus 2Bi/T? should always be smaller
than 1. If this expression is negative, then the poly-
nomial equation has four complex roots and accord-
ingly the fin fails to function. This will be further
explained when discussing the temperature profiles in
the fin forn = 1 and 2.

Relative to equations (21)-(25), the a-versions of
the equations are valid if the polynomial equation
has three real roots and n = 1; the b-versions of the
equations are valid if the polynomial equation has one
real and two complex roots and #n = 1. The c-versions
apply to n = 2. The b’- and ¢’-versions apply torn = 1
and 2, respectively, if N = 0.

If the hypothetical boundary condition at the fin tip
is considered, the term including Bi in the polynomial
equation disappears. Provided that this modified form
of the polynomial equation is used, equations (19)—
(37) are valid. If N =0, the term including Bi dis-
appears in equations (38) and (43), the remaining
equation being valid (excluding equation (42)). For
the hypothetical boundary condition, the roots of the
polynomial equation are expressed in simple formulae
for N > 0 in ref. [25].

In order to determine the temperature distribution
in the fin for given values of n (i.e. n =1 or 2), Bi,
L/W and N (ie. 0 < N N,,) first T, is determined
with equation (20). To this end, a value for Ty is
assumed (i.e. T, > 1). The roots of the polynomial
equation in equation (17) are calculated using this T},
and the other foregoing parameters. With these roots
and parameters, m, o, f, and p, are predicted with
equations (22)—(25), respectively. The values of
F(u, /) and F(u,/a) are then determined with the
tabulated values of F(u/a) or with the formulae pre-
sented in the Appendix. The value of T is iterated
until equation (20) is satisfied.

Having found T, m, F(u,/o) and a, the evaluation
of T for a given value of X'is carried out with equation
(19). First F(u/a) is predicted with this equation since
X, mand F(u, /o) in it are known. Thereafter the value
of p, which satisfies this F(u/«), is obtained with the

H. C. UnaL

tabulated values or with the formulae in the Appen-
dix. Then T is determined from equation (21).

For the evaluation of X for a given value of T (i.e.
1 < T<Ty), uis first solved from equation (21), and
thereafter F(u/a) is solved from the tabulated values
or from the formulae in the Appendix, and X is finally
solved from equation (19). The foregoing method
seems simpler than the previous one.

ILLUSTRATION OF DIMENSIONLESS
TEMPERATURE AT FIN BASE

It follows from the foregoing that it is sufficient to
know n, Bi, L/W and N for the determination of T}
and N, Bi, L/W, N and X for that of T. Taking Bi
and N as parameters, T, was plotted against L/ W in
Fig. 1forn = —1and 0, and in Figs. 2and 3 forn =1
and 2, respectively. The ratio L/ W was varied between
1 and 100; Bi was taken as being equal to values of
0.001, 0.01 and 0.1; N was equal to 0 and 0.5 for
n=—land0,andt00,0.25and 0.5 forn =1and 2.

For n = —1, the heat flux on the surface of the fin
is uniform. For this particular case, the asymptotic
behaviour of 7y, is obvious in Fig. 1. The value of 0,
is solved from equation (14)

G.=11 Bi L° 1-N ZW
e — _2W2 _+L .

Since 6, cannot be either negative or zero, the values of
Biand L/W are restricted in accordance with equation
(45) for a given value of N (i.e. 0 < N < N,).

For n = 0, the heat transfer coefficient is uniform.
Forr =0and 0 < N < N, the asymptotic behaviour
of T, is illustrated in Fig. 1. According to equation
(16) and noting the definition of b given by equation
(7), the asymptotic value of T, (i.e. the value of T, for
large values of L/W) is expressed by

(45)

1+./Bi
T, =—>FT—. 46
b= (46)
Contrary to the case analysed for n= —1, no

restriction applies to the magnitudes of Bi and L/W
forn=0and 0 < N< N,

Figures 2 and 3 show that for N=0,n =1 or 2 and
a given value of Bi, and if 1 < L/W < oo, T, increases
if L/W is increased. But for given values of Bi and N
(i.e. 0 < N N,) and for L/W > 1, the fin fails to
function beyond a certain value of L/W. For the
values of L/W smaller than this certain value, the fin
operates ; thus the value of L/W is restricted. This is
best explained with two examples given below. For
example first consider the case where Bi=0.1,
N=0.5L/W2=1andn =1 or 2. For these values of
the parameters, the fin fails to function. Consequently
the temperature distribution in the fin cannot be deter-
mined with equations (19)—(25). This is due to the fact
that the roots of the polynomial equation in equation
(17) do not satisfy the conditions required for these
roots in the case where Bi=0.1, N=0.5,n=1o0r2
and L/W = 1. The curve for N = 0.5 and Bi = 0.1 is
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F1G. 1. Dimensionless temperature at the fin base forn = —1 and 0.

missing in Figs. 2 and 3, respectively, since the fin
operates for L/W < 0.768 if n = 1 and it is invalid for
O0< /W< 1forn=2.

Secondly, consider for example the case where
Bi=0.01, N=10.25and n = 1 or 2. For these values
of the parameters, the maximum value of L/ Wis equal
to 27.58 for n = 1 and 22.98 for n = 2, as can be seen
from Figs. 2 and 3. These values of L/W are rounded
values. The coordinates of the end point of a dis-
continuous curve in these figures give the maximum
values of L/W and T,. If L/ W exceeds 27.58 forn = 1
and 22.98 for n = 2, then the fin fails to function. This
is explained as follows : forn = 1, Bi = 0.01, N = 0.25
and 1 < L/W < 27.58, the foregoing polynomial
equation has three real roots f#,, f§, and f,, and
l>f,>f8,>p; Forn=2 Bi=001,N=0.25and
1 < L/W < 22.98, the polynomial equation has two
real roots f§, and f, and two complex roots, and
1> f,>f,> —1. For these quoted values of the
parameters, if L/ W is increased 7, increases, as shown
in Figs. 2 and 3, and f8, approaches f,. For n = | and
L/W = 27.58, B,isequal to 8, and p, o, u, and y, are
equal to #/2 (see equations (21a) and (23a)—(25a)). If
the modular angle o and the amplitude u are equal to
n/2, then F(u/o) is infinite and equation (19) (giving
the temperature distribution in the fin) is invalid. For

n=2and L/W = 22.98, B, isequal to f§, and a; given
by equation (31) is not defined. Consequently aa,
expressed in equations (32)—-(37) are not predictable
and equation (19) is again invalid. Thus in the case
where n =1, N=0.25, Bi=0.01 and L/W > 27.58
and in the case where n = 2, N = 0.25, Bi = 0.01 and
L/W > 2298, the fin fails to function, i.e. T, < 1. The
foregoing implies that N, the maximum value of
the generation number, is equal to 0.25 for n =1,
Bi =0.01 and L/W = 27.58 and for n = 2, Bi = 0.01
and L/W = 22.98.

If the hypothetical boundary condition at the fin
tip is considered, the asymptotic value of T, is equal
to the inverse ratio of the square root of N for n = 1
and to the inverse ratio of the cubic root of N for
n = 2 for all values of Bi[25]. This boundary condition
implies that no heat transfer takes place at the fin tip.
Accordingly the fin is infinitely long and therefore for
given values of n, Bi, L/W and N (0 < N < 1), the fin
is always able to transfer all the heat generated in it
and all the heat conducted into it at its base to its
surroundings. But if heat transfer takes place at the
fin tip then the fin length should be finite since the
boundary condition expressed in equation (4) should
be fulfilled. For given values of Bi and N (i.e.
0 < N < N,), this results in that either the fin does
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F1G. 2. Dimensionless temperature at the fin base forn = 1.

not function at all or that it operates only if the value
of L/W is smaller than a certain value. Beyond this
certain value, the fin is invalid, i.e. T, < 1. These are
in fact foregone conclusions since Bi shows the ratio
of the interior to exterior resistances and the heat
transfer coefficient decreases along the finif n = 1 and
2. This is further illustrated in Figs. 2 and 3: the
smaller the value of N the larger the maximum value
of L/W; the smaller the value of Bi the larger the
maximum value of L/ W ; and the smaller the value of
n the larger the maximum value of L/ W.

That which has been stated above also implies that
the assumption that the heat transfer coefficient is
constant yields incorrect solutions for 0 < N < N, if
in fact this coefficient is inconstant and heat transfer
takes place at the fin tip. It follows from Fig. 1 or
equation (46) that T, has an asymptotic value for a
given value of Bi if n =0, contrary to the results
obtained forn = —1, 1 and 2.

The foregoing clearly shows that the solutions of
equation (2) for the fin with uniform internal heat
generation are trivial for some values of parameters
considered if either the hypothetical boundary con-
dition at the fin tip is assumed or a uniform heat
transfer coefficient is assumed whilst this coefficient is
nonuniform. There is, however, another undesirable
feature in the solution of equation (2) with this bound-

ary condition. This is quantitatively described in the
following section.

THE EFFECT ON THE PERFORMANCE OF A
FIN OF FIN TIP BOUNDARY CONDITION

In order to evaluate this effect, the rate of heat
transfer from a straight (or a cylindrical) fin to the
fluid surrounding it is taken as a criterion. This rate
of heat transfer is expressed as

= —AK (—19 +QAL
q= dx =0 Q :

The first term on the right-hand side of equation
(47) gives the rate of heat flow into the fin at its base
and the second term the rate of heat flow due to
internal heat generation. Dividing equation (47) by
AOuhy, yields the non-dimensional rate of heat transfer
from the fin to its surroundings

47

L
S=f+N_

> (48)

where

Ahy0, “49)
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e
dx/c_o

S=— (50)

0,

The value of f given by equation (50) is, in fact,
the fin effectiveness which gives the ratio of heat fluxes
with and without fin on a surface. Replacing (df/dx)
in equation (50) with the dimensionless temperature
gradient ; using the expression given by equation (17)
for the latter ; considering T = T, for X = 0; and after
rearranging, equation (50) yields f for all values of
n, excludingn = —2

1 ,gm,,,,,,, T+
BN+ 2Ty 7
—(nAENTY "2+ (n+2)NTP* D —1

. 0.5
+(";?§B’}> .65

/=

If no internal heat sources exist in the fin, all the
terms including N in equation (51) disappear (i.c.
N = @ = 0). If the hypothetical boundary condition
at the fin tip is considered, the last term including Bi
in equation (51) also disappears [25]. f is a function
of n, Bi, Nand T, and T, that of n, Bi, Nand L/ W,

For given values of n, Bi, L/W and N, the dimen-
sionless rates of heat transfer from the straight (or

dMT 31:7-K

the cylindrical) fin were calculated with cquation (48)
considering the real and the hypothetical boundary
conditions. The error in the calculation of the rate of
heat transfer from the fin to its surroundings using
the hypothetical boundary condition at the fin tip is
defined by

S.— S,
S,

e= - 100.

(52)

Taking Bi and N as exemplary parameters, this
error was plotted against L/W for n = — 1 and 0 in
Fig. 4, and for » = 1 and 2 in Figs. 5 and 6, respec-
tively. The value of L/W was varied between | and
100 and N was taken equal to 0 and 0.5 and Bi to
0.001, 0.01 and 0.1. These ranges of the foregoing
quoted parameters are of practical importance [1, 2,
22].

For n = —1, the heat flux on the surface of the fin
is constant. Therefore, equation (53), the derivation
of which is a straightforward matter, can also be used
to determine e, thus

e= ’—100 (53)

1
L/W+1 ’
It is obvious from equation (53) that the error is
not a function of Biand Nifn = —1.
The following conclusions have been drawn from
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F1G. 4. Percentage error in the determination of the rate of heat flow from a fin to its surroundings for
n= —1and0.

Figs. 4-6. For given values of n (excluding n = —1),
Bi and L/W, the effect on the error of internal heat
generation seems to be quite insignificant and it
becomes negligibly small if » increases. For given
values of Bi, L/W and N, the effect on e of n (excluding
n = —1) seems to be of second-order importance at
least for high values of Bi.

For n=0, 1, 2 and small values of Bi (ie.
Bi < 0.001), e approaches that given for n = —1 in
Fig. 4. This is explained as follows : the physical mean-
ing of Bi implies that for a sufficiently small value of
Bi and a given value of L/W, the temperature dis-
tribution in the fin should be very flat (e.g. see equa-
tions (15) and (16)). This means a practically constant
heat flux on the surface of the fin, a condition which

applies to the case where n = —1. When n =0 for
example and beyond Bi < 1077, e is identical to the
value given in Fig. 4 forn = —1.

It follows from Figs. 5 and 6 that for Bi = 0.01 and
N = 0.5, the fin fails to function if L/W > 14.8382 for
n=1andif L/W > 11.1460 for n = 2. For Bi = 0.1,
N =0.5and n=1 or 2 the fin is again invalid for
LW = 1.

The curve given in Fig. 4 for when n = 0, and when
N = 0 applied to the most studied case in the litera-

ture. In accordance to this curve, the error varies
between 50 and 10% for Bi = 0.1, 0.01 and 0.001 if
0.88 < L/W < 3.51, 098 < L/W < 6.51 and
1.00 < L/W < 8.51, respectively. The foregoing
ranges of parameters seem to be of importance for
practical applications. For L/W>9, e < 10%.
Methods were proposed to improve the results
obtained with the solution of equation (2) for a
straight fin [3] and a cylindrical fin [5] if the hypo-
thetical boundary condition at the fin tip was con-
sidered. In accordance with the practice of these
methods, L in this solution should be replaced by
(L+ W) in order to take into account the heat losses
from the fin tip. Accordingly the equations presented
herein should first be reduced to the condition in
which no heat transfer takes place at the fin tip, as
explained previously. Thereafter it is sufficient to
replace L in equations (7) and (48) by (L+ W). In
this case the error is less than 2% approximately for
all the range of parameters being considered in Figs.
46 if N=0. If N=0.5 and 1 < L/W < 100, and
where n =0, Bi=0.001, 0.01 and 0.1 and where
Bi =0.001, 0.01 and n = 1 or 2, the error is less than
8.3% approximately.

For N > 0, given values of Biand L/Wand n =1
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or 2, the corrected length should be used with caution
since the roots of the polynomial equation in equation
(17) should fulfill the conditions required for them if
T, determined with the corrected length is used in this
polynomial equation. Otherwise this value of T, is
trivial (or the fin is invalid).

In the literature there is a widely used fin criterion,
i.e. the fin efficiency. In order to obtain the fin
efficiency the fin effectiveness should be divided by
(L/W+1) and (L/W) if the real and the hypothetical
boundary conditions at the fin tip are considered,
respectively.

SUMMARY/CONCLUSIONS

The analytic solutions for the one-dimensional tem-
perature distribution in a straight (or a cylindrical)
fin with and without internal heat generation are pre-
sented on the assumption that there are two different
boundary conditions at the fin tip, i.e. the condition
where heat transfer takes place at the fin tip and the
condition where no heat transfer takes place there.
The heat transfer coefficient is a power function of the
temperature difference between the fin and its sur-
roundings. The exponent in this power function is

taken as being equal to —1, 0, 1 and 2. The ranges of
parameters considered for the quantitative analysis of
the fin are: the modified Biot number Bi, 0.1 —any
value smaller than 0.1 ; the generation number N, 0—
0.5; the ratio of the fin length to the half-fin thickness
(or the half-radius) L/W, 1-100. These ranges of con-
ditions are appropriate for the one-dimensional analy-
sis of the fin.

If it is assumed that no heat transfer takes place at
the fin tip, then the results obtained for the foregoing
ranges of parameters indicate that the determination
of the rate of heat transfer from the fin to its sur-
roundings includes a fairly large error for some con-
ditions which are important for practical applications,
and that the solutions obtained for the temperature
distributions in the fin are trivial beyond some values
of the parameters considered if internal heat sources
exist in the fin.

The foregoing error in the determination of the rate
of heat transfer from the fin is less than 10% for
L/W >9, and for L/W <9 this error seems to be
acceptable if a so-called corrected fin length is
adopted.

If heat transfer takes place at the fin tip and the heat
transfer coefficient is assumed to be uniform whilst in
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F1G. 6. Percentage error in the determination of the rate of heat flow from a fin to its surroundings for
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fact it is nonuniform, then the temperature dis-
tribution obtained in a fin with uniform heat gen-
eration is trivial beyond the same values of parameters
considered.

For the calculation of Legendre’s normal elliptic
integral of the first kind, simple formulae are pre-
sented and which are needed if the power in the quoted
power function is equal to 1 and 2.

To the knowledge of the author and for these par-
ticular powers, the analytic solutions of the fore-
going quoted differential equation for a straight (or
acylindrical) fin with uniform internal heat generation
are not available in the literature if heat transfer takes
place at the fin tip. This differential equation is also
of practical significance in chemical and nuclear engin-
eering.
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APPENDIX: SIMPLE FORMULAE FOR THE
DETERMINATION OF F(u/x)

These formulae are presented herein for the convenience
of the design engineer, as can be deduced from the following :
F(p/a), Legendre’s normal elliptic integral of the first kind,
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is an infinite series [28] and does not rapidly converge for
large values of a. The value of ¢ may vary between 0 and =
and o between 0 and =/2. For the adequate determination of
F(u/x) (i.e. to obtain the tabulated values of F(u/a)), it is
sufficient to consider the first 4, 12 and 121 terms in this
infinite series for o = n/12, 3n/12 and S5n/12, respectively.
The value of F(u/a) is tabulated for 0 < p < n/2 whilst values
of F(u/o) for amplitudes greater than n/2 are required for
the determination of the temperature distribution in a
straight (or cylindrical) fin where n=1 and 2. If
897/180 < a < 7/2 and 89%/180 < u < w/2, then the tabu-
lated values of F(u/a) can only be used if the value of « is
reduced with a suitable transformation.
For0 €< pu<mand 0 < a € n/12, F(u/a) is given by

(Fla) = p+J30.5J,+0.375J2J,+0.3125J%J,)

(Al)
where
J, = arcsina (A2)
J, =0.50(u—sin pcos p) (A3)
Jy = 0.75(J,— }sin® g cos ) (A4)
Jy = 2(J5—0.2sin’ pcos p). (A5)

Equation (Al) predicts F(u/a) with an error of less than
approximately 0.003%. The error is based on a nine-digit
value of F(u/a).
If 0 < p < n/2 and n/12 < a < =2, the values of « and p
should be reduced using the Gauss transformation [28]. Let
Js = /(1—sin’2) (A6)
Jﬁz(l-JS)/(l+JS)- (A7)

The reduced amplitude and modular angle are then given by

(1= /(I —sin’ asin’ u)
= - A8
u, arcsm( (1—J)sing (A8)
o, = arcsinJ, (A9)

and the following relation holds good between F(u/or) and
Fp, fo) :
Flufay = (L+J) F(u,fa,). (A10)

If the reduced modular angle is still higher than n/12. then
the values of «, and u, are successively reduced using equa-
tions (A6)—(A10) until the last reduced modular angle is
equal to 7/12 or smaller than =/12, for which equation (Al)
is valid. For g = a = n/2, F(p/«) is infinite, and for y = n/2
and 0 < o < /2, the value of u cannot be reduced but only
the value of « as equations (A6)—(A9) imply.

If /2 < p<mand /12 < a < w/2, F(p/a) is divided into
two parts [14]

Flja) = 2F({x/2}f2) ~ F(m— /). (A1)

Since (n—p) is smaller than n/2, the previously described
method is used to determine F({n— u}/a) and F({n/2}/x),
and F(p/a) is predicted with equation (All).

EFFET DE LA CONDITION LIMITE AU SOMMET D’UNE AILETTE SUR LA
PERFORMANCE DE L’AILETTE AVEC OU SANS GENERATION INTERNE DE CHALEUR

Résumé—Une étude analytique est conduite pour une ailette droite monodimensionnelle (ou cylindrique)
avec ou sans génération de chaleur, en considérant leffet de ’hypothése qu’il n’y a pas de transfert de
chaleur a l'extrémité. L’erreur apparait plus grande pour certaines conditions importantes pour les
applications pratiques. Voici les domaines de variation des paramétres : nombre de Biot: 0,1 et valeurs
inférieures ; nombre de génération : 0-0,5 et rapport de la longueur a la demi-épaisseur de l’ailette (ou au
demi-rayon) : 1-100. Le coefficient de transfert de chaleur est supposé étre une fonction puissance de la
différence de température entre 'ailette et ’environnement et la puissance est égalea — 1,0, I et 2.
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DER EINFLUSS DER RANDBEDINGUNG AN EINER RIPPEN-SPITZE AUF DIE
LEISTUNGSFAHIGKEIT DER RIPPE MIT UND OHNE INNERE WARMEERZEUGUNG

Zusammenfassung—Die Wirmeabgabe einer eindimensionalen geraden (oder zylindrischen) Rippe mit und
ohne innere Wirmeerzeugung wurde unter der Annahme, daB an der Rippen-Spitze kein Wirmeiibergang
stattfindet, analytisch untersucht. Diese Annahme liefert fiir einige Werte der betrachteten Parameter
triviale Losungen, wenn innere Wirmequellen in der Rippe existieren. Der Fehler bei der Bestimmung der
obigen Wirmeabgabe erweist sich fiir einige praktisch wichtige Bedingungen als bedeutend. Fir die
quantitative Analyse der Rippe werden die folgenden Parameter-Bereiche benutzt : Biot-Zahl : kleiner oder
gleich 0,1 ; Warmeerzeugungs-Zahl : 0-0,5; Verhéltnis von Rippenladnge zu ihrer halben Dicke (oder ihrem
halben Radius): 1-100. Der Wirmeiibergangskoeffizient wird als eine Potenzfunktion der Temperatur-
differenz zwischen der Rippe und ihrer Umgebung angenommen ; die Exponenten in dieser Funktion sind
—~1;0; 1 und 2.

BJIUAHUE 'PAHUYHOI'O YCJIOBUST HA KOHLE PEEPA HA ETO PABOUUE
XAPAKTEPUCTHKHN NTPH HAJTUYHUHN U B OTCYTCTBUE BHYTPEHHEI'O
TETIJIOBBIAEJIEHHU A

ABHOTaUMS—BbINOHEHB! AHAJMTHHECKHE MCCIICAOBAHMA BIMAHHA OJHOMEPHOIO NPAMOTO (MM UMJIMH]-
pHyeckoro) pebpa ¢ BHyTPCHHHM TEILIOBbIACIEHAEM H O€3 HETO Ha CKOPOCTh TEIUIOBOTO NMOTOKA B Npe/-
HOJIOXEHHH, YTO HAa KOHIIE peGpa HE MPOHCXOMHUT TemrooOMeHa. [laHHOE NMpeAnoNOKEHHE NPUBOAUT K
TPHBMaJIbHBIM PEIUCHUSAM U1 HEKOTOPBIX DACCMAaTPHUBAE€MBIX 3HAYEHMH MAapaMeTpoB IPH HANMYHH B
pebpe BHYTPEHHHX TEMJIOBBIX MCTOYMHMKOB. Omnbka B ONpelesieHHH CKOPOCTH TEIUIOBOTO IMOTOKA OKa-
3bIBaeTCA GOJNBIION I HEKOTOPBIX YCJIOBHIA, CYILIECTBEHHDLIX U IPAKTHYECKOTO MPUMEHEHKs. B kosu-
4ECTBEHHOM aHaju3e pebpa paccMAaTpHBAaINCh CJEYIOLIME AMANA30Hbl MapaMeTpoB: uucio bBuo:
0,1—mro60e 3Havenne Hmke 0,1; yncno Tennossiacnenns: 0-0,5 v oTHomeHHe ITHHBI pebpa K ero nomy-
TonmmuHe (WM K mosaypaauycy): 1-100. KoapduumeHT TennonepeHoca onpeaenseTcs U3 3aBUCHMOCTH
JHEPruM OT Pa3HOCTH TeMIlepaTyp pebpa u oKpyxaloweil cpeibl, pH4YeM Keprug pasia — 1,0, 1 u 2.



