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Abstrac~An analytical investigation is carried out on the effect on the rate of heat flow from a one- 
dimensional straight (or cylindrical) fin with and without internal heat generation of the assumption that 
no heat transfer takes place at the fin tip. This assumption yields trivial solutions for some values of the 
parameters considered if internal heat sources exist in the fin. The error in the determination of the 
foregoing rate of heat flow appears to be large for some conditions important for practical applications. 
For the quantitative analysis of the fin, the following parameter ranges are used : Blot number, 0.1 any 
value lower than 0.1 ; generation number, 0-0.5; and the ratio of the length of the fin to its half-thickness 
(or its half-radius), 1 100. Theheattransfercoefficientisassumedtobeapowerfunctionofthetemperature 
difference between the fin and its surroundings and that the power in this function is equal to 1, 0, 1 and 2. 

INTRODUCTION 

THE OBJECT of this study has been to analytically 
investigate the effect on the performance of  a straight 
fin of  rectangular profile (or a cylindrical fin) with 
and without internal heat generation of  the boundary 
condition at the fin tip. To this end, a one-dimensional 
analysis has been carried out. This is justified if the 
Blot number is less than 0.1. In this case the error 
made in the determination of  the rate of  heat transfer 
from the fin to the fluid surrounding it is less than 1% 
[1, 21. 

Since the one-dimensional differential equation of  
the temperature distribution in the fin is of  second 
order, two boundary conditions are required to solve 
this differential equation. The boundary condit ion at 
the fin base is that the temperature there is constant. 
For  the fin tip, one of  the two boundary conditions 
can be selected, the condition that no heat transfer 
takes place at the fin tip or the condit ion that heat 
transfer takes place at the fin tip. Herein, the first 
mentioned boundary condition at the fin tip is referred 
to as the hypothetical boundary condition and the 
latter as the real boundary condition. 

For  the steady-state one-dimensional analytic 
analysis of  a straight (or a cylindrical) fin with no 
internal heat sources, a uniform heat transfer 
coefficient and the hypothetical boundary condit ion 
at the fin tip were considered in practically all the 
classical references [3 7] and in handbooks [8, 9]. In 
a few studies, the heat transfer coefficient was assumed 
to be dependent either on the space coordinate [10- 
13] or the temperature of  the fin itself [14-17]. In refs. 
[18, 19], the real boundary condit ion at the fin tip was 
used however and the heat transfer coefficient was 

assumed to depend on the temperature of  the fin itself. 
A uniform heat transfer coefficient and the hypo- 

thetical boundary condition at the fin tip were also 
used in the analytic one-dimensional analysis of  a 
straight (or a cylindrical) fin with internal heat gen- 
eration [20-23]. In refs. [24, 25], the heat transfer 
coefficient was taken as a function of  the temperature 
of  the fin. 

For  most industrial applications, the heat transfer 
coefficient is given by 

h = aO" (1) 

where a and n are constants. The dimensionless con- 
stant, n, in equation (1), may vary in general between 
approximately - 6.6 and 5 and in most practical appli- 
cations between approximately - 3  and 3. If the heat 
transfer coefficient is given by equation (1) and the 
hypothetical boundary condition at the fin tip is taken 
into account, then the one-dimensional differential 
equation of  the temperature distribution in a straight 
(or a cylindrical) fin with no internal heat sources can 
be analytically solved only for a few values of  n in 
equation (1) using ordinary (i.e. algebraic, logarithmic 
and circular) functions [14]. These values of  n are 
equal to 0, - 1 . 0 ,  - 1 . 5 ,  - 1 . 6 ,  - 1 . 8 ,  - 1 . 9 ,  - 2 . 1 ,  
- 2 . 2 ,  - 2 . 4 ,  - 2 . 5 ,  - 3 . 0  and - 4 . 0  if n is either an 
integer or a one-digit number. For  the remaining 
values of  n, the temperature distribution in the fin 
is expressed in a transcendental function, i.e. in 
Legendre's normal elliptic integral of  the first kind 
for n = 1 and 2 [14] and in the hypergeometric 
function for - oo < n < oo [26]. 

The contents of  this paper are outlined below. Con- 
sidering that the real boundary condition at the fin tip 
and taking n = - 1, 0, 1 and 2, respectively, then the 
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N O M E N C L A T U R E  

A cross-sectional area of  a fin [m 2] T 
a given constant [ W m - 2  K -( '+  ~)] U 
a i , . . . ,  a9 constants defined in the text W 
Bi modified Biot number  at the base of  a J( 

fin x 
b modified fin parameter Y, Z 
e error 
F(l~/c~) Legendre's normal elliptic integral of  the 

first kind 
f fin effectiveness 
g . . . . .  92 constants defined in the text /3 
h heat transfer coefficient [W m 2 K -  ~] 7 

0 
i imaginary number,  ~ / -  1 
J~ . . . . .  J~ constants or functions defined in 

the Appendix 
K thermal conductivity of  the fin material # 

[Win 1K 1] 
L fin length [m] Subscripts 
M, m constants defined in the text 1 , . . . ,  4 
N generation number  b 
n given constant e 
P circumference of  a cylindrical fin [m] h 
Q internal heat generation [W m -3] 
q rate of  heat transfer from a fin [W] m 
S dimensionless rate of  heat transfer from r 

a fin t 

dimensionless temperature 
half-fin thickness [m] 
constant defined in the text [m] 
dimensionless space coordinate 
space coordinate [m] 
constants defined in the text. 

Greek symbols 
modular  angle [rad] 
root of  a polynomial equation 
constant defined in the text 
difference between the temperature of  a 
fin and that of  the fluid surrounding 
it at point x [K] 
amplitude [rad]. 

order of  a root of  a polynomial 
fin base (i.e. x = 0) 
fin tip (i.e. x = L) 
hypothetical boundary condition at the 
fin tip 
maximum value 
reduced value 
real boundary condit ion at the fin tip. 

analytic solutions of  the one-dimensional differential 
equation of  the temperature distribution in a straight 
(or a cylindrical) fin with uniform internal heat gen- 
eration are presented. These solutions are in a general 
form and apply also to the case where no internal heat 
sources exist in the fin and also to the case where no 
heat transfer takes place at the fin tip. The dimen- 
sionless rate of  heat transfer from the fin to the fluid 
surrounding it is taken as a criterion for characterizing 
the performance of  the fin. This criterion can be deter- 
mined if the temperature distribution in the fin is 
known. For  given values of  n, the modified Biot num- 
ber Bi, the generation number N and the ratio of  the 
length of  the fin to its half-thickness (or half-radius) 
L/W and using the real and hypothetical boundary 
condition, respectively, the foregoing criterion can be 
calculated and the values compared to one another.  
The ranges of  the dimensionless variables considered 
a r e : n =  - 1 , 0 ,  1 a n d 2 ; B i = 0 . 1 - a n y v a l u e l o w e r  
than 0.1 ; N = 0-0.5 and L~ W = 1-100. For  some con- 
ditions important  for practical applications however, 
the error in the prediction of  the rate of  heat transfer 
from the fin to its surroundings appears to be of  a 
significant magnitude if it is assumed that no heat 
transfer takes place at the fin tip. Fur thermore  if 
n = 1, 2 and N > 0, then the solutions obtained with 
this assumption are trivial beyond a certain value of  
L/Wfor a given value of  Bi. 

To the author 's  knowledge and in the cases where 
n = 1, 2 and N > 0, then the analytic solutions of  
the foregoing non-linear differential equation are not 
available in the literature if  the real boundary con- 
dition at the fin tip is being considered. These solutions 
may also be of  importance in nuclear and chemical 
engineering since this differential equation applies to 
diffusion and chemical reaction provided that the 
appropriate changes in notation, the assumptions and 
the remaining boundary condition are taken into 
account. 

Some of  the solutions presented herein include 
Legendre's normal elliptic integral of  the first kind. 
Simple formulae are given to calculate this elliptic 
integral in the Appendix. 

DIFFERENTIAL EQUATION OF TEMPERATURE 
DISTRIBUTION 

A straight fin (of rectangular profile) or a cylindrical 
(i.e. pin) fin is now considered. For  the analysis of  
such a fin, the following assumptions are made : one- 
dimensional steady-state heat conduction through the 
fin, a constant thermal conductivity of  the fin material 
and a constant cross-sectional area for the fin. Internal 
heat generation in the fin is either uniform or zero. 
The temperature of  the fluid surrounding the fin is 
constant. The origin of  the space coordinate x is at 
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the fin base and the positive value of x is toward 
the fin tip. The straight fin is infinitely long in the 
longitudinal direction. A unit  length of this fin in this 
direction is being considered here. The heat transfer 
coefficient is given by equation (1). 

For the assumptions being made, the non-dimen- 
sional differential equation of the temperature dis- 
tr ibution in the fin then becomes 

d2T 
d X  2 - b Tg " T  ~+ i~ = - b N T b .  (2) 

The boundary  conditions are expressed by 

T =  Tb=0b/0~ f o r X ' = 0  (3) 

and 

dT  L 
= - B i  Tb"  f o r X =  1. (4) 

dX W 

The non-dimensional  parameters used in equations 
(2) (4) are defined as follows: 

T = 0/0o (5) 

X = x / L  (6) 

b = Bi (7) 

h b W  aO~W 
Bi = - (8) 

K K 

Q W  Q W  

U = hbOb = a~,,+ t~ (9) 

m which 

and 

W = U for the straight fin (10) 

W = A / P  for the cylindrical fin. (11) 

In accordance with the first boundary  condit ion 
expressed in equation (3), the temperature difference 
at the fin base is equal to 0b. The second boundary  
condition in equation (4) implies that heat transfer 
takes place at the fin tip, i.e. - K ( d 0 / d x )  = h~Oc for 
x = L. For the hypothetical boundary  condit ion at 
the fin tip equation (4) reduces to 

dT  
- 0 f o r X =  1. (12) 

dX 

Equation (12) expresses the fact that no heat trans- 
fer takes place at the fin tip or that the fin tip is 
perfectly insulated. Strictly speaking, this condit ion 
can be only realized if the fin is infinitely long. 

The definition of the Biot number  given in the rela- 
tive literature is identical to that of the modified Biot 
number  used herein (see equation (8)) for the straight 
fin but is different for the cylindrical fin. For  the latter, 
the modified Biot number  is half of the Biot number  
defined in the literature. 

In order to solve equation (2), a and n in equation 

(1), the fin thickness 2U (or the fin diameter), the 
amount  of internal heat generation Q, the temperature 
difference between the fin and its surroundings at the 
fin base 0b and the thermal conductivity of the fin 
material K should be known. These values have been 
reduced to three dimensionless variables, i.e. the 
modified Biot number  Bi, the ratio of the length of 
the fin to its half-thickness (or half-radius) L~ W and 
the generation number  N, as can be deduced from 
equations (7) to (11). In equation (2) Tb is not an 
unknown since it is determined with the solution of 
this equation considering that Th = 0h/0e and that 0c 
is the temperature difference between the fin and its 
surroundings at the fin tip. 

The ratio of the interior to exterior resistances for 
the fin is characterized by Bi and the fin shape by 
L / W .  The ratio of the total heat generated in the fin 
to the heat that would be dissipated from the fin if all 
of the fin was at the base temperature and that no 
heat transfer took place at the fin tip is N [20]. If no 
heat transfer takes place at the fin tip then the defi- 
nition of N implies that the maximum value of N is 
equal to 1 and that no heat is conducted into the fin 
at its base for N = 1 since d T / d X  = 0 along the fin. If 
now the heat transfer takes place at the fin tip then N 
has no physical meaning but it is still a convenient 
dimensionless variable for the analysis of the fin since, 
per definition, d T / d X c a n n o t  be zero along the fin (see 
equation (4)). The maximum value of this generation 
number,  Nm, for the condition that heat transfer 
takes place at the fin tip, can be determined with a 
trial and error method, as will become clear to the 
reader later. 

SOLUTION OF DIFFERENTIAL EQUATION 

In order to solve equation (2) using the real bound- 
ary condition at the fin tip and the boundary condition 
expressed in equation (3) for n = - 1, 0, 1 and 2, the 
procedures given in refs. [17, 25] have been used and 
in which the solutions of this equation with the hypo- 
thetical boundary  condit ion at the fin tip were given. 
Therefore, it seems sufficient to present only the solu- 
tions of equation (2) but not the details in these solu- 
tions. 

In the cases where n = - 1 and 0 

The dimensionless temperature in the fin, T, and 
the dimensionless temperature at the base of the fin, 
Tb, for n = -- 1 are given by 

(13) 

and those for n = 0 by 
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T =  N T b - x / B i e  Vh(1-x~ +(Tb--NTb +x/Bie-#b)  

x c°sh{x/b(1-X)} (15) 
cosh x/b 

Tb = l+x/Bi{1- (e ' /bc°shx /b)  '} (16) 

N-l- (1 -- N)/cosh x/b 

If no internal heat sources exist in the fin, Nis taken 
as being equal to zero in equations 03)-(16) (i.e. 
N = Q = 0 ) .  

If the hypothetical boundary condition at the fin 
tip is considered, then W/L equations (13) and (14) 
and the terms including Bi in equations (15) and (16) 
disappear since Tb is a function of b and N, and T a 
function of b, N and X, as equations (2), (3) and (12) 
imply• The foregoing can also be explained as follows : 
for a given value of b, numerous combinations of the 
values of Bi and L / W  are possible (see equation (7)), 
but for given values of b and L/W, then the value of 
Bi is unique. If L is increased (keeping W, N and b 
constant) both W/L and Bi decrease. For sufficiently 
large values of L, the rate of heat transfer from the 
tip of the fin should be negligible when compared 
with that from the fin, consequently the boundary 
condition at the fin tip should not affect T and Tb 
and the values of Bi and W/L should be very small• 
Accordingly, the terms including W/L in equations 
(13) and (14) and those including Bi in equations (15) 
and (16) become negligibly small if the fin is very long, 
a condition which practically implies the hypothetical 
boundary condition at the fin tip. 

In the cases where n = 1 and 2 
In order to calculate the dimensionless temperature 

distribution in the fin for these cases, equation (2) 
should be integrated twice. The first integration of this 
equation including the determination of the inte- 
gration constant (using the real boundary condition 
at the fin tip) is presented below for all values of n 
excluding - 2 

dT 

if the amplitude/~ and the modular angle ~ in it are 
known. In ref. [27] F(#/e) is tabulated and it can be 
also predicted with the simple formulae given in the 
Appendix. For known values of Tb, Bi, L~ W and N, 
# is only a function of T and ~ is a constant. In 
equation (19) m is also constant depending on the 
foregoing four parameters. With equation (19) Tb is 
solved taking T = To = 1 for X = 1. In this case this 
equation reduces to 

mF(pb/~) -- mF(p~/cQ = 1. (20) 

The left-hand side of equation (20) includes only Th, 
Bi, L / W  and N. From this equation Tb is solved as 
will be explained later. In equation (20) #b is the value 
ofp  for T = T b and Pe the value of/t for T = T e = 1. 

In order to calculate g, ~ and m in equation (19), 
the roots of the polynomial equation in equation (17) 
are required. Relevant to these roots and n, only the 
following conditions should be considered to deter- 
mine the temperature distribution in the fin [25]. 

(1) For n = 1, the polynomial (i.e. cubic) equation 
has three real roots //t, //2 and /t3 and 1~>//~ 

(2) For n = l, the polynomial equation has one 
real root fl~ and two complex roots//2 and//3, and//~ 
is a positive real number equal to 1 or smaller than 1. 

(3) For n = 2, the polynomial (i.e. fourth order) 
equation has two real roots//l and/?2 and two complex 
roots//3 and//4, and 1 ~>//i >//2 >~ - 1. 

For n = 1 and in the case where the polynomial 
equation has three real roots;/~, m, ~, /~b and /to are 
given by 

# = a r c s i n ( \ / / 2 _ T J  J forO~</~ 

(21a) 

m = 2{7(//,--//3)} 05 (22a) 

(n+2)Bi]~ °5 
{ ' I  T("+z)-(n+2)NT~+'~T+(n+2)NT~b"+~)-I+ 2T~b J}  

- - d X  ( 1 7 )  

where 

2b Tb n 
(18) 

-- n + 2 "  

The integration of equation (17) including the cal- 
culation of the integration constant (using the bound- 
ary condition expressed in equation (3)) yields 

mF(t~/e) = - -  X + rnF(#b/~). (19) 

In equation (19) F(#/~) is Legendre's normal elliptic 
integral of the first kind. Its value can be determined 

• ff 2-//A05] 
c¢ = arcsln l~fl~--fl3) ; (23a) 

~(//I -- Tb~0"5 ; (24a) 
/~b = arcsin (\f12 -- Tb} ) 

• / / i - - 1  0.5 

For n = 1 and in the case where the polynomial equa- 
tion has one real root fl~ and two complex roots//2 
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and/3~ ; the latter are given by 

/3.~ = r + Y i  

and p, m. c~,/t b and I*~ by 

( T - r - M c o t Z ~  
It = arccos \ T--  r +  M tan z ]  for0  ~</t ~< ~ 

(21b) 

@ M  3 ; o.5 
m = - - M ( t a n Z + c o t Z )  ( ~ Z ) J  (22b) 

c~ = Z (23b) 

( T b - r - M c o t Z ~  
,ub = arccos \ Tb _ r ~ ]  (24b) 

= I~ arccos r + ~ I ~ Z ]  (25b) 

in which 

M =  I~1 

M 
t a n ( 2 Z ) = p , . -  r f o r O < 2 Z < n .  

If no heat sources exist in the fin (i.e. Q = N = 0) 
(26) then the roots of the foregoing polynomial equation 

can be given in simple expressions, and equations 
(21)-(25) can be significantly simplified. Since the 
design engineer deals mostly with the applications in 
which N = 0, it is considered justifiable to present 
these roots and simplified equations for N = 0. 

In the case where n = 1 and N = 0, the polynomial 
equation has one real root/3~ and two complex roots 
/32 and/33 and these roots are given by 

( /31 = 1 - -  ~ 74b// ( 3 ~ )  

/32.3 = @ ( - 1  +ix/3) (3')) 

and it, m, ~,/~b and ff~ are given by 

{T+fllg, /~=arccos/----\T+/3~g2j! f o rO~<pdn  (21b') 

(27) x/3 ( 3 ~ ) : / f l ~  o.5 
m = -- ~ / 3 1  (tan Z + cot Z)  \ z  sin- _ z /  

(28) 
(22b ~ ) 

For n = 2 and if the polynomial equation has two real 
roots /3, and /32 and two complex roots /33 and f14; 
these complex roots are given by 

/33.4 = a, _+gi (29) 

and I~, m, ~, gb and tl~ by 

arccos(a~-a~T~ 
t t = \ a s T _ a 7  / f o r O ~ < / ~ < n  (21c) 

2a4a9 
{ -2; , .~o~(f i , -  & ) }  o.. 

c~ = arcsin a9 

f ib \ a s T b _ a 7 /  

arccos (_a_' -- a6 ~ 
/t  c = \ O  5 - - O 7 J  

a ,  = Igl 

a~+(fl ,--a,)( /32--a,)  
a 3  = a 2 ( / 3 1 - - / 3 2 )  

a4 = a 3 - - ( a ~ +  1) °'5 

a5 = f i , --a,--a2/a4 

a 6 = /3, - -a ,  q - a 2 a  4 

a7 = ~(/3,+/32)as--~(/3,--/3~)a6 

as = ~(/3,+/32)a6--~(/3,--~32)as 

a9 = (1 +a~)  -°'5. 

in which 

in which 

= Z = n / 1 2  

/~h = arccos \ f b  @/3, g2ff 

tie = a r c c o s / - - - - -  
\1 +/3,g27 

(23b') 

(24b') 

~25b') 

.q, = ~(1- -x /3co tZ)  (40) 
(22c) 

g2 = ~(1 +x/3  t anZ) .  (41) 

(23c) As noted earlier herein, fl~ given by equation (38) 
should always be a positive real number  equal to 1 or 

(24c) smaller than 1 ; accordingly 3Bi/(2Tb) should always 
be smaller than 1. This can be explained as follows: 
if3Bi/(2Tb) is greater than 1, then the real root of the 

(25c) polynomial equation is given by 

-T7 - (42) 

(30) 
and the complex roots can be given by equation (39) 
if/3~ expressed in equation (42) is considered. It now (31) 
follows from equations (26) to (28) and equations 

(32) (39) and (42) that tan 2Z is always negative, contrary 
to its definition. Therefore, if 3Bi/(2Tb) > 1, the fin 

(33) fails to operate and accordingly the temperature dis- 
tr ibution in it cannot  be determined. The foregoing 

(34) also implies that the polynomial equation has always 
(35) one real and two complex roots i fn  = 1 and N = 0. 

For  n = 2 and N = 0, the polynomial equation has 
(36) 

two real roots /3~ and/32 and two complex roots/33 
(37) and/34, and these roots are expressed in 
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( 2Be) lj" 
/~1.2=+ l - r a j  

fl3,4 = __+flli 

(43) 

(44) 

and/~, m, cq #b and/~e in 

/~ = arccos ( -  ~ )  f o r 0 ~ < # ~  n (21c') 

1 
m - (22c') 

f114(2"~) 

c~ = n/4 (23c') 

/~b = arccos ( - f l , / T b )  (24C') 

~te = arccos ( - - i l l ) .  (25C') 

The expression in parentheses in equation (43) can- 
not  be negative ; thus 2Bi/T 2 should always be smaller 
than 1. I f  this expression is negative, then the poly- 
nomial equation has four complex roots and accord- 
ingly the fin fails to function. This will be further 
explained when discussing the temperature profiles in 
the fin for n = 1 and 2. 

Relative to equations (21)-(25), the a-versions of  
the equations are valid if the polynomial  equation 
has three real roots and n = 1 ; the b-versions of  the 
equations are valid if  the polynomial  equat ion has one 
real and two complex roots and n = 1. The c-versions 
apply to n -- 2. The b'- and c'-versions apply to n = 1 
and 2, respectively, if N = 0. 

If  the hypothetical boundary condit ion at the fin tip 
is considered, the term including Bi in the polynomial  
equation disappears. Provided that this modified form 
of the polynomial equation is used, equations (19) 
(37) are valid. I f  N = 0, the term including Bi dis- 
appears in equations (38) and (43), the remaining 
equation being valid (excluding equation (42)). For  
the hypothetical boundary condition, the roots of  the 
polynomial equation are expressed in simple formulae 
for N > 0 in ref. [25]. 

In order to determine the temperature distribution 
in the fin for given values of  n (i.e. n = 1 or 2), Bi, 
L / W  and N (i.e. 0 ~< N ~< Nm) first Tb is determined 
with equation (20). To this end, a value for Tb is 
assumed (i.e. Tb > 1). The roots of  the polynomial  
equation in equat ion (17) are calculated using this Tb 
and the other foregoing parameters. With these roots 
and parameters,  m, e, /*b and #e are predicted with 
equations (22)-(25), respectively. The values of  
F(pb/~) and F(#e/~) are then determined with the 
tabulated values of  F(p/~) or with the formulae pre- 
sented in the Appendix. The value of  Tb is iterated 
until equation (20) is satisfied. 

Having found Tb, m, F(/tb/CQ and ~, the evaluation 
of  T f o r  a given value of  Xis  carried out with equation 
(19). First F(I*/~) is predicted with this equation since 
X, m and F(/tb/C 0 in it are known. Thereafter the value 
o f / , ,  which satisfies this F(#/~), is obtained with the 

tabulated values or with the formulae in the Appen- 
dix. Then T is determined from equation (21). 

For  the evaluation of  X for a given value of  T (i.e. 
1 < T ~< Tb), # is first solved from equation (21), and 
thereafter F(#/a) is solved from the tabulated values 
or from the formulae in the Appendix, and Xis  finally 
solved from equation (19). The foregoing method 
seems simpler than the previous one. 

ILLUSTRATION OF DIMENSIONLESS 
TEMPERATURE AT FIN BASE 

It follows from the foregoing that it is sufficient to 
know n, Bi, L / W  and N for the determination of  Tb 
and N, Bi, L/W, N and X for that of  T. Taking Bi 
and N as parameters, Tb was plotted against L / W  in 
Fig. 1 for n = - 1 and 0, and in Figs. 2 and 3 for n = 1 
and 2, respectively. The ratio L / W  was varied between 
1 and 100 ; Bi was taken as being equal to values of  
0.001, 0.01 and 0.1 ; N was equal to 0 and 0.5 for 
n = - 1 and 0, and to 0, 0.25 and 0.5 for n = 1 and 2. 

For  n = - 1, the heat flux on the surface of  the fin 
is uniform. For  this particular case, the asymptotic 
behaviour of  Tb is obvious in Fig. 1. The value of  0e 
is solved from equation (14) 

0o= l - g w 2  1-N+2~ . (45t 

Since 0e cannot be either negative or zero, the values of 
Bi and L~ W are restricted in accordance with equation 
(45) for a given value of  N (i.e. 0 ~< N ~ Nm). 

For  n = 0, the heat transfer coefficient is uniform. 
For  n = 0 and 0 < N ~ Nm, the asymptotic behaviour 
of  Tb is illustrated in Fig. 1. According to equation 
(16) and noting the definition of  b given by equation 
(7), the asymptotic value of Tb (i.e. the value of  Tb for 
large values of  L/W) is expressed by 

rb -- 1 +x/Bi (46) 
N 

Contrary to the case analysed for n = - 1 ,  no 
restriction applies to the magnitudes of  Bi and L/W 
f o r n  = 0 a n d  0 ~< N~< N m. 

Figures 2 and 3 show that for N = 0, n = 1 or 2 and 
a given value of  Bi, and if 1 ~< L / W  < 0% Tb increases 
if  L~ W is increased. But for given values of  Bi and N 
(i.e. 0 < N~< Nm) and for L/W>>. 1, the fin fails to 
function beyond a certain value of  L/W. For  the 
values of  L / W  smaller than this certain value, the fin 
operates;  thus the value of  L / W  is restricted. This is 
best explained with two examples given below. For  
example first consider the case where Bi = 0.1, 
N = 0.5, L / W  >/ 1 and n = 1 or 2. For  these values of  
the parameters, the fin fails to function. Consequently 
the temperature distribution in the fin cannot be deter- 
mined with equations (19)-(25). This is due to the fact 
that the roots of  the polynomial equation in equation 
(17) do not satisfy the conditions required for these 
roots in the case where Bi = 0.1, N = 0.5, n = 1 or 2 
and L/W>~ 1. The curve for N = 0.5 and Bi = 0.1 is 
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FIG. 1. Dimensionless temperature at the fin base for n = - l and 0. 

missing in Figs. 2 and  3, respectively, since the fin 
operates  for L / W  <~ 0.768 i f n  = 1 and  it is invalid for 
O < L / W < ~  1 f o r n  = 2. 

Secondly, consider for example the case where 
Bi = 0.01, N = 0.25 and  n = 1 or 2. Fo r  these values 
of  the parameters ,  the m ax i m um  value of  L / W i s  equal 
to 27.58 for n = 1 and  22.98 for n = 2, as can be seen 
from Figs. 2 and  3. These values of  L / W  are rounded  
values. The  coordinates  of  the end poin t  of  a dis- 
con t inuous  curve in these figures give the m a x i m u m  
values of L / W a n d  Tb. I f  L / W  exceeds 27.58 f o r n  = 1 
and 22.98 for n = 2, then the fin fails to funct ion.  This  
is explained as follows : for n = 1, Bi = 0.01, N = 0.25 
and  l ~ L / W < 2 7 . 5 8 ,  the foregoing polynomial  
equa t ion  has three real roots  ill, f12 and  f13, and  
1 > [31 > [32 > fi3. F o r n  = 2, Bi = 0.01, N = 0.25 and  
1 <~ L / W  < 22.98, the polynomial  equa t ion  has  two 
real roots  fl~ and  fl: and  two complex roots,  and  
I > [3~ > [32 > - 1. For  these quo ted  values of  the 
parameters ,  if L / W  is increased Tb increases, as shown 
in Figs. 2 and  3, and  f12 approaches  fl~. For  n = 1 and  
L / W  = 27.58, f12 is equal  to fl~ and/z ,  ~, #h and/~,  are 
equal  to n/2 (see equat ions  (21a) and  (23a) (25a)). I f  
the modu la r  angle a and  the ampl i t ude / t  are equal  to 
n/2, then F(t~/a) is infinite and  equa t ion  (19) (giving 
the tempera ture  d is t r ibut ion  in the fin) is invalid. For  

n = 2 and  L / W  = 22.98, f12 is equal  to fi~ and  a3 given 
by equa t ion  (31) is no t  defined. Consequent ly  a4--a9 
expressed in equat ions  (32)-(37) are not  predictable  
and  equa t ion  (19) is again  invalid. Thus  in the case 
where n = l, N =  0.25, Bi = 0.01 and  L / W  > 27.58 
and  in the case where n = 2, N = 0.25, Bi = 0.01 and  
L / W  > 22.98, the fin fails to function,  i.e. T~ < 1. The 
foregoing implies tha t  Nm, the max imum value of  
the generat ion number ,  is equal  to 0.25 for n = 1, 
Bi = 0.01 and  L / W  = 27.58 and for n = 2, Bi = 0.01 
and  L / W  = 22.98. 

I f  the hypothet ical  bounda ry  condi t ion  at the fin 
tip is considered,  the asymptot ic  value of  Tb is equal  
to the inverse rat io  of  the square root  of  N for n = 1 
and  to the inverse rat io  of  the cubic root  of  N for 
n = 2 for all values of  Bi [25]. This  bounda ry  condi t ion  
implies tha t  no  heat  t ransfer  takes place at  the fin tip. 
Accordingly the fin is infinitely long and  therefore for 
given values of  n, Bi, L~ W and  N (0 < N ~< l ), the fin 
is always able to t ransfer  all the heat  generated in it 
and  all the heat  conducted  into it at  its base to its 
surroundings .  But  if heat  t ransfer  takes place at  the 
fin tip then the fin length should be finite since the 
bounda ry  condi t ion  expressed in equa t ion  (4) should 
be fulfilled. Fo r  given values of  Bi and N (i.e. 
0 < N ~< Nm), this results in tha t  ei ther the fin does 
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not function at all or that it operates only if the value 
of  L / W  is smaller than a certain value. Beyond this 
certain value, the fin is invalid, i.e. Tb < 1. These are 
in fact foregone conclusions since Bi shows the ratio 
of  the interior to exterior resistances and the heat 
transfer coefficient decreases along the fin i fn  = 1 and 
2. This is further illustrated in Figs. 2 and 3: the 
smaller the value of  N the larger the maximum value 
of  L/W; the smaller the value of  Bi the larger the 
maximum value of  L/W;  and the smaller the value of  
n the larger the maximum value of  L/W. 

That  which has been stated above also implies that 
the assumption that the heat transfer coefficient is 
constant yields incorrect solutions for 0 < N ~< Nm, if 
in fact this coefficient is inconstant and heat transfer 
takes place at the fin tip. It follows from Fig. 1 or 
equat ion (46) that Tb has an asymptotic value for a 
given value of  Bi if  n = 0, contrary to the results 
obtained for n = - 1, 1 and 2. 

The foregoing clearly shows that the solutions of  
equat ion (2) for the fin with uniform internal heat 
generation are trivial for some values of  parameters 
considered if either the hypothetical boundary con- 
dition at the fin tip is assumed or a uniform heat 
transfer coefficient is assumed whilst this coefficient is 
nonuniform. There is, however, another undesirable 
feature in the solution of  equation (2) with this bound- 

ary condition. This is quantitatively described in the 
following section. 

THE EFFECT ON THE PERFORMANCE OF A 
FIN OF FIN TIP B O U N D A R Y  CONDIT ION 

In order to evaluate this effect, the rate of  heat 
transfer from a straight (or a cylindrical) fin to the 
fluid surrounding it is taken as a criterion. This rate 
of  heat transfer is expressed as 

dO 
q = - AK(~x)x=o+ QAL. (47) 

The first term on the right-hand side of  equation 
(47) gives the rate of  heat flow into the fin at its base 
and the second term the rate of  heat flow due to 
internal heat generation. Dividing equation (47) by 
AObh b yields the non-dimensional rate of  heat transfer 
from the fin to its surroundings 

L 
S = f + U ~  (48) 

where 

q 
S - (49) 

AhbO b 
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The value of  f given by equation (50) is, in fact, 
the fin effectiveness which gives the ratio of  heat fluxes 
with and without fin on a surface. Replacing (dO/dx) 
in equation (50) with the dimensionless temperature 
gradient;  using the expression given by equation (17) 
for the latter ; considering T = Tb for X = 0 ; and after 
rearranging, equation (50) yields f for all values of  
n, excluding n = - 2  

- (n + 2) NT{  "+ 2) + (n + 2) NT(b "+ ') -- 1 

(.+=)8;;)0, (51) 
+ 2T• J J  " 

If no internal heat sources exist in the fin, all the 
terms including N in equat ion (51) disappear (i.e. 
N = Q = 0). If  the hypothetical boundary condit ion 
at the fin tip is considered, the last term including Bi 
in equation (51) also disappears [25]. f is a function 
of  n, Bi, N and Tb and Tb that of  n, Bi, N and L / W .  

For  given values of  n, Bi, L / W  and N, the dimen- 
sionless rates of  heat transfer from the straight (or 

the cylindrical) fin were calculated with equation (48) 
considering the real and the hypothetical boundary 
conditions. The error in the calculation of  the rate of  
heat transfer from the fin to its surroundings using 
the hypothetical boundary condition at the fin tip is 
defined by 

• 100. (52) e 

Taking Bi and N as exemplary parameters, this 
error was plotted against L / W  for n = - 1 and 0 in 
Fig. 4, and for n = 1 and 2 in Figs. 5 and 6, respec- 
tively. The value of  L / W  was varied between 1 and 
100 and N was taken equal to 0 and 0.5 and Bi to 
0.001, 0.01 and 0.1. These ranges of the foregoing 
quoted parameters are of  practical importance [1, 2, 
22]. 

For  n = - 1, the heat flux on the surface of  the fin 
is constant. Therefore, equation (53), the derivation 
of  which is a straightforward matter, can also be used 
to determine e, thus 

e =  - 1 0 0 L / 1 W + I  . (53) 

It is obvious from equation (53) that the error is 
not  a function of  Bi and N if n = - 1. 

The following conclusions have been drawn from 
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Figs. 4-6.  Fo r  given values of  n (excluding n = - 1), 
Bi and  L~ W, the effect on  the er ror  of  internal  heat  
genera t ion  seems to be quite insignificant and  it 
becomes negligibly small  if  n increases. For  given 
values of Bi, L/Wand N, the effect on  e o f n  (excluding 
n = - 1) seems to be of  second-order  impor tance  at 
least for high values of  Bi. 

For  n = 0 ,  1, 2 and  small values of  Bi (i.e. 
Bi < 0.001), e approaches  tha t  given for n = - 1 in 
Fig. 4. This is explained as follows : the physical mean-  
ing of  Bi implies tha t  for a sufficiently small  value of  
Bi and  a given value of  L/W, the t empera ture  dis- 
t r ibu t ion  in the fin should  be very flat (e.g. see equa- 
t ions (15) and  (16)). This means  a practically cons tan t  
heat  flux on  the surface of  the fin, a condi t ion  which 
applies to the case where n = - 1 .  W h e n  n = 0 for 
example and  beyond  Bi <~ 10 -v, e is identical to the 
value given in Fig. 4 for n = -- 1. 

It follows f rom Figs. 5 and  6 tha t  for  Bi -- 0.01 and  
N = 0.5, the fin fails to funct ion i fL /W > 14.8382 for 
n = 1 and  i f L / W >  11.1460 for n = 2. Fo r  Bi = 0.1, 
N = 0.5 and  n = 1 or 2 the fin is again invalid for 
L/W >~ 1. 

The curve given in Fig. 4 for when n = 0, and  when  
N = 0 applied to the mos t  studied case in the litera- 

ture. In accordance to this curve, the error  varies 
between 50 and  10% for Bi = 0.1, 0.01 and  0.001 if 
0.88 ~< L/W<~ 3.51, 0.98 ~< L/W<~ 6.51 and  
1.00 ~< L/W<~ 8.51, respectively. The foregoing 
ranges of  parameters  seem to be of  impor tance  for 
practical  applications.  Fo r  L/W> 9, e < 10%. 
Methods  were proposed  to improve the results 
ob ta ined  with the solut ion of  equa t ion  (2) for a 
s t raight  fin [3] and  a cylindrical fin [5] if the hypo- 
thetical bounda ry  condi t ion  at  the fin tip was con- 
sidered. In accordance with the practice of  these 
methods ,  L in this solut ion should  be replaced by 
(L ÷ W) in order  to take into account  the heat  losses 
f rom the fin tip. Accordingly the equat ions  presented 
herein should first be reduced to the condi t ion  in 
which no  heat  t ransfer  takes place at the fin tip, as 
explained previously. Thereaf ter  it is sufficient to 
replace L in equat ions  (7) and  (48) by ( L +  W). In 
this case the error  is less than  2% approximate ly  for 
all the range of  parameters  being considered in Figs. 
~ 6  if N = 0. I f  N = 0.5 and  1 ~< L/W<<, 100, and  
where n = 0, Bi= 0.001, 0.01 and  0.1 and  where 
Bi = 0.001, 0.01 and  n = 1 or  2, the error  is less than  
8.3% approximately.  

For  N > 0, given values of  Bi and L/W and n = 1 
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or 2, the corrected length should be used with caution 
since the roots of  the polynomial equation in equation 
(17) should fulfill the conditions required for them if 
Tb determined with the corrected length is used in this 
polynomial equation. Otherwise this value of  Tb is 
trivial (or the fin is invalid). 

In the literature there is a widely used fin criterion, 
i.e. the fin efficiency. In order to obtain the fin 
efficiency the fin effectiveness should be divided by 
(L/W+ 1) and (L/W) if  the real and the hypothetical 
boundary conditions at the fin tip are considered, 
respectively. 

S U M M A R Y / C O N C L U S I O N S  

The analytic solutions for the one-dimensional tem- 
perature distribution in a straight (or a cylindrical) 
fin with and without internal heat generation are pre- 
sented on the assumption that there are two different 
boundary conditions at the fin tip, i.e. the condit ion 
where heat transfer takes place at the fin tip and the 
condition where no heat transfer takes place there. 
The heat transfer coefficient is a power function of  the 
temperature difference between the fin and its sur- 
roundings. The exponent in this power function is 

taken as being equal to - l, 0, 1 and 2. The ranges of  
parameters considered for the quantitative analysis of  
the fin are:  the modified Biot number Bi, 0 . l - a n y  
value smaller than 0.1 ; the generation number N, 0 -  
0.5 ; the ratio of  the fin length to the half-fin thickness 
(or the half-radius) L/W, 1-100. These ranges of  con- 
ditions are appropriate for the one-dimensional analy- 
sis of  the fin. 

If it is assumed that no heat transfer takes place at 
the fin tip, then the results obtained for the foregoing 
ranges of  parameters indicate that the determination 
of  the rate of  heat transfer from the fin to its sur- 
roundings includes a fairly large error for some con- 
ditions which are important  for practical applications, 
and that the solutions obtained for the temperature 
distributions in the fin are trivial beyond some values 
of  the parameters considered if internal heat sources 
exist in the fin. 

The foregoing error in the determination of  the rate 
of  heat transfer from the fin is less than 10% for 
L/W> 9, and for L/W<<. 9 this error seems to be 
acceptable if  a so-called corrected fin length is 
adopted. 

If  heat transfer takes place at the fin tip and the heat 
transfer coefficient is assumed to be uniform whilst in 
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fact it is nonun i fo rm,  then the tempera ture  dis- 
t r ibu t ion  ob ta ined  in a fin with uni form heat  gen- 
era t ion  is trivial beyond the same values of  parameters  
considered.  

F o r  the calculat ion of  Legendre 's  no rmal  elliptic 
integral of  the first kind, simple formulae  are pre- 
sented and  which are needed if  the power  in the quo ted  
power  funct ion is equal  to 1 and  2. 

To the knowledge of  the au tho r  and  for these par- 
t icular powers, the analytic solutions of  the fore- 
going quoted  differential equa t ion  for a straight  (or 
a cylindrical) fin with  un i fo rm internal  heat  generat ion 
are no t  available in the l i terature if heat  t ransfer  takes 
place at  the fin tip. This  differential equa t ion  is also 
of  pract ical  significance in chemical  and  nuclear  engin- 
eering. 
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A P P E N D I X :  S I M P L E  F O R M U L A E  FOR THE 
D E T E R M I N A T I O N  OF F(#[~) 

These formulae are presented herein for the convenience 
of the design engineer, as can be deduced from the following" 
F(~/7), Legendre's normal  elliptic integral of  the first kind, 

is an infinite series [28] and does not  rapidly converge for 
large values of  ~. The value of/~ may vary between 0 and n 
and c~ between 0 and n/2. For the adequate determination of 
F(p/~) (i.e. to obtain the tabulated values of  F(l~/cO), it is 
sufficient to consider the first 4, 12 and 121 terms in this 
infinite series for ~ = n/12, 3n/12 and 5n/12, respectively. 
The value of  F(#/c0 is tabulated for 0 < # ~< n/2 whilst values 
of  F(#/~) for amplitudes greater than n/2 are required for 
the determination of  the temperature distribution in a 
straight (or cylindrical) fin where n =  1 and 2. If 
89n/180 < ~ < n/2 and 89n/180 </~ < r~/2, then the tabu- 
lated values of  F(#/o 0 can only be used if the value of ~ is 
reduced with a suitable transformation.  

For 0 ~/1 ~< n and 0 ~< :~ ~< n/12, F(I~/~) is given by 

(F,/~) = ~ + J~ (0.5J2 + 0.375J~J3 + 0.3125J ~4J4 ) 

(AI) 

where 

Jl - arcsin ~ (12) 

J2 - 0 . 5 0 ( # - s i n p c o s # )  (A3) 

J3 = 0.75(J2 -- 3 I sin 3 # cos p) (14) 

J4 = ~(J3 - 0.2 sin 5 p cos p). (15) 

Equation (A1) predicts F(#/a) with an error of  less than 
approximately 0.003%. The error is based on a nine-digit 
value of F(p/~). 

I f 0  <~ p <~ n/2 and nil2 < ~ < n/2, the values ofct and Iz 
should be reduced using the Gauss  t ransformation [28]. Let 

Js = x/( 1 sin: ~) (A6) 

J6 = ( 1 - J s ) / ( 1  + J s ) .  (17) 

The reduced amplitude and modular  angle are then given by 

( 1 - x / ( l  - s in2  c~ sin~ #) ) (18) 
#r = arcsin (1 - - J s ) s i n #  

~r = arcsinJ6 (19) 

and the following relation holds good between F(t~/~) and 
r(#r/zr) : 

F(#/~) = (l +J6)F(#,./o:,). (A 10) 

If the reduced modular  angle is still higher than n/12, then 
the values of  cq and #r are successively reduced using equa- 
tions (A6) (AI0) until the last reduced modular  angle is 
equal to n/12 or smaller than nil2, for which equation (A l) 
is valid. For/~ = ~ = n/2, F(#/~) is infinite, and for u - n/2 
and 0 < a < n/2, the value of/~ cannot be reduced but only 
the value of ~ as equations (A6) (A9) imply. 

If n/2 < /*  ~< n and n/12 < c~ < n/2, F(#/cO is divided into 
two parts [14] 

F(#/cO = 2F({n/2}/:O F({n ~t}/~). (A11) 

Since (n- -p)  is smaller than n/2, the previously described 
method is used to determine F({n-l~}/~) and F({z/2}/~), 
and F(l~/ct) is predicted with equation (A11). 

EFF E T  DE LA C O N D I T I O N  LIMITE A U  S O M M E T  D ' U N E  AILETTE SUR LA 
P E R F O R M A N C E  DE L ' AIL E T T E  AVEC OU SANS G E N E R A T I O N  I N T E R N E  DE C H A L E U R  

R ~ s u m ~ - U n e  6tude analytique est conduite pour  une ailette droite monodimensionnelle (ou cylindrique) 
avec ou sans g6n6ration de chaleur, en consid6rant l'effet de l 'hypoth6se qu'il n 'y  a pas de transfert de 
chaleur fi l'extr6mit& L'erreur apparait  plus grande pour  certaines conditions importantes pour les 
applications pratiques. Voici les domaines de variation des param6tres:  nombre  de Biot: 0,1 et valeurs 
inf~rieures ; n o m b r e  de g~n~ration : 0-0,5 et rapport  de la longueur ~i la demi-6paisseur de l'ailette (ou au 
demi-rayon) : 1-100. Le coefficient de transfert de chaleur est suppos6 6tre une fonction puissance de la 

diff6rence de temp6rature entre l'ailette et l 'environnement et la puissance est 6gale fi - 1, 0, 1 et  2. 
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D E R  EINFLUSS D E R  R A N D B E D I N G U N G  AN EINER RIPPEN-SPITZE A U F  DIE 
L E I S T U N G S F , ~ H I G K E I T  D E R  RIPPE MIT U N D  O H N E  I N N E R E  W . A R M E E R Z E U G U N G  

Zusammenfassung--Die  W/irmeabgabe einer eindimensionalen geraden (oder zylindrischen) Rippe mit und 
ohne innere W/irmeerzeugung wurde unter  der Annahme,  dab an der Rippen-Spitze kein W/irmefibergang 
stattfindet, analytisch untersucht.  Diese Annahme  liefert ffir einige Werte der betrachteten Parameter 
triviale L6sungen,  wenn innere W/irmequellen in der Rippe existieren. Der Fehler bei der Best immung der 
obigen Wfirmeabgabe erweist sich ffir einige praktisch wichtige Bedingungen als bedeutend. Fiir die 
quantitative Analyse der Rippe werden die folgenden Parameter-Bereiche benutzt : Biot-Zahl : kleiner oder 
gleich 0,1 ; Wfirmeerzeugungs-Zahl : 0-0,5 ; Verh/iltnis yon Rippenl~inge zu ihrer halben Dicke (oder ihrem 
halben Radius):  1-100. Der W/irmefibergangskoeffizient wird als eine Potenzfunktion der Temperatur-  
differenz zwischen der Rippe und ihrer Umgebung  angenommen ; die Exponenten in dieser Funkt ion  sind 

- l ; 0 ; l u n d 2 .  

BJII/I~IHHE F P A H H q H O F O  YC.rlOBH.q HA KOHI_[E PEBPA HA EFO P A B O q H E  
X A P A K T E P H C T H K H  HP H H A J I H q H I 4  t4 B O T C Y T C T B H E  B H Y T P E H H E F O  

TErIYIOBbI~[EJIEHH$1 

AmIoTauuU---Bbmo~HeHbl aHa~HTH~ecKHe HCcJ~e~oBaHHS BJIHflHH$10~HOMepHoro npsMoro (HJ]H IAFLIIHH~- 
pHqeCl~OrO) pe6pa c BHyTpCHHHM TeHJIOBbUleYleHHeM H 6e3 Hero Ha CKOpOC~l'b TeHJIOBOFO HOTOKa B Hpe~- 
HO.qO)KeHHH, qTO Ha KOHUe pe6pa He HIpOHCXO~HT TerLqOO6MeHa. ~aHHOe Hpe}lHo.qoXeHHe HpHBO~IT I¢ 
TpHBHaJIbHblM pemeHH~lM ]Lrlg HeKOTOpblX paCCMaTpHBaeMblX 3HatleHHfi napaMeTpoB npH Ha.qHqHH B 
pe6pe BHyTpeHHHX TeH~OBblX HCTOqHHKOB. OmH6ra a OHpe,~eJIeHHH CKOpOCTH Ten.qoaoro HOTOKa OKa- 
3bIBaeTc~[ 6onbmofi ~V!a HeKOTOpblX yCJIOBHfi, CylL[eCTBeHHblX ~II~l npai<TH~lecKoro HpHMeHeHH~I. B KOJIH- 
qO~TBeHHOM aHa.rlH3e pe6pa paC~MaTpHBaYlHCb c~e~ytomne ~lHaHa3OHbI napaMeTpos: qHCnO BHO: 
0 , 1 - - ~ 6 o e  3HaqeHHe HH)I(e 0,1; tlHCJIO TeHJIOBbl~eJIeHH~I: 0-0,5 H OTHOmeHHe ~UIHHbI pe6pa r erO no~y- 
TO-qmHHe (HJIH K no~ypa~Hycy): 1--100. KO3(~)HIIIteHT TeiuIOIIepeHoca oHpe~eJiseTc$1 H3 3aBHCHMOCTH 

3HepFHH OT pa3HOCTH TeMnepaTyp pe6pa H oKpy>ra~mefi c p e ~ ,  npHqeM 3HepFH$1 paaHa -- I, 0, 1 n 2. 


